\begin{tabbing} $\forall$$k$:Knd, $T$,$B$:Type, $l$:IdLnk, ${\it ds}$:fpf(Id; $x$.Type), ${\it tg}$:Id, $f$:(decl{-}state(${\it ds}$)$\rightarrow$$T$$\rightarrow$$B$). \\[0ex](($\uparrow$isrcv($k$)) \\[0ex]$\Rightarrow$ ((destination(lnk($k$)) = source($l$) $\in$ Id) $\wedge$ ((lnk($k$) = $l$) $\Rightarrow$ (($T$ = $B$) $\wedge$ (tag($k$) = ${\it tg}$))))) \\[0ex]$\Rightarrow$ normal{-}ds\=\{i:l\}\+ \\[0ex](${\it ds}$) \-\\[0ex]$\Rightarrow$ normal{-}type\=\{i:l\}\+ \\[0ex]($T$) \-\\[0ex]$\Rightarrow$ normal{-}type\=\{i:l\}\+ \\[0ex]($B$) \-\\[0ex]$\Rightarrow$ R{-}realizes\=\{i:l\}\+ \\[0ex](\=Rsends(\=${\it ds}$;\+\+ \\[0ex]$k$; \\[0ex]$T$; \\[0ex]$l$; \\[0ex]fpf{-}single(${\it tg}$; $B$); \\[0ex]cons($<$${\it tg}$, $\lambda$$s$,$v$. cons(($f$($s$,$v$)); [])$>$; [])); \-\\[0ex]${\it es}$.usends1{-}p(${\it es}$;${\it ds}$;$k$;$T$;$l$;${\it tg}$;$B$;$f$)) \-\- \end{tabbing}